Edinburgh Neural Machine Translation Systems for WMT 16

نویسندگان

  • Rico Sennrich
  • Barry Haddow
  • Alexandra Birch
چکیده

We participated in the WMT 2016 shared news translation task by building neural translation systems for four language pairs, each trained in both directions: English↔Czech, English↔German, English↔Romanian and English↔Russian. Our systems are based on an attentional encoder-decoder, using BPE subword segmentation for open-vocabulary translation with a fixed vocabulary. We experimented with using automatic back-translations of the monolingual News corpus as additional training data, pervasive dropout, and target-bidirectional models. All reported methods give substantial improvements, and we see improvements of 4.3–11.2 BLEU over our baseline systems. In the human evaluation, our systems were the (tied) best constrained system for 7 out of 8 translation directions in which we participated.12

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Edinburgh/JHU Phrase-based Machine Translation Systems for WMT 2015

This paper describes the submission of the University of Edinburgh and the Johns Hopkins University for the shared translation task of the EMNLP 2015 Tenth Workshop on Statistical Machine Translation (WMT 2015). We set up phrase-based statistical machine translation systems for all ten language pairs of this year’s evaluation campaign, which are English paired with Czech, Finnish, French, Germa...

متن کامل

NYU-MILA Neural Machine Translation Systems for WMT'16

We describe the neural machine translation system of New York University (NYU) and University of Montreal (MILA) for the translation tasks of WMT’16. The main goal of NYU-MILA submission to WMT’16 is to evaluate a new character-level decoding approach in neural machine translation on various language pairs. The proposed neural machine translation system is an attention-based encoder–decoder wit...

متن کامل

MetaMind Neural Machine Translation System for WMT 2016

Neural Machine Translation (NMT) systems, introduced only in 2013, have achieved state of the art results in many MT tasks. MetaMind’s submissions to WMT ’16 seek to push the state of the art in one such task, English→German newsdomain translation. We integrate promising recent developments in NMT, including subword splitting and back-translation for monolingual data augmentation, and introduce...

متن کامل

Sogou Neural Machine Translation Systems for WMT17

We describe the Sogou neural machine translation systems for the WMT 2017 Chinese↔English news translation tasks. Our systems are based on a multilayer encoder-decoder architecture with attention mechanism. The best translation is obtained with ensemble and reranking techniques. We also propose an approach to improve the named entity translation problem. Our Chinese→English system achieved the ...

متن کامل

Edinburgh's Submission to all Tracks of the WMT 2009 Shared Task with Reordering and Speed Improvements to Moses

Edinburgh University participated in the WMT 2009 shared task using the Moses phrase-based statistical machine translation decoder, building systems for all language pairs. The system configuration was identical for all language pairs (with a few additional components for the GermanEnglish language pairs). This paper describes the configuration of the systems, plus novel contributions to Moses ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016